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Abstract
In this paper stationary nondiffracting vector fields are discussed. Using the
definition of propagating and evanescent nondiffracting waves based on the
invariance of the intensity distribution during propagation, all the types of such
fields in stratified inhomogeneous media are found.

PACS numbers: 41.85.−p, 78.20.Ci

The search for new nondiffracting beams and physical foundations of their existence seems
to be an exciting problem of modern theoretical and experimental physics. Such light
constructions are believed to have a number of advantages in comparison with usual beams
and pulses. These properties can be used in some optical scientific setups or in industrial
devices.

First of all we need to note that diffraction is a phenomenon associated with the wave
nature of light. This causes the light to spread. We can easily make certain of this if we
consider, for example, the Gaussian beam widely used to focus light. However, it turns out
that it is possible to overcome diffraction using the so-called nondiffracting beams.

The simplest nondiffracting light construction is the plane wave. Other, more realistic,
nondiffracting solutions of the wave equation in homogeneous media are usually represented
as a superposition of plane waves with wave vectors lying on the cone. The first and most
studied kind of such conical beams is the Bessel beam [1]. It was obtained experimentally by
Durnin et al in [2] and now is usually implemented by using axicon, holographic techniques,
or a Fabry–Perot cavity. In contrast to the ideal mathematical construct of [1], it was shown
that it is possible to make only an approximation to Bessel beams (quasi-Bessel beams) [2],
which possess the properties of the Bessel beam only over a finite distance. These properties
include the presence of a central core (bright or dark as in the case of the high-order Bessel
beam [3]) and self-reconstruction [4]; they can carry orbital angular momentum [5] and optical
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vortices [6]. All these properties lead to a number of practical uses of Bessel beams, such as
optical manipulation of particles, cooling and transport of gas particles, especially to achieve
Bose–Einstein condensation, second harmonic generation, and so on [7–9]. A more rigorous
and extensive review of the properties and applications of Bessel beams is given in [10]. Except
for the Bessel beam, which is a light pattern with circular symmetry, there are fundamental
nondiffracting modes with different structures arising from consideration of wave equation
in other coordinate systems. The solutions with elliptical symmetry can be described by
Mathieu functions and they are called Mathieu beams [11]. The parabolic solution has also
been recently found [12]. The main purpose of the present paper is to give general conditions
of nondiffracting beam propagation without considering particular light patterns. Therefore,
we base our approach on the Helmholtz equation and on manipulation with the time-averaged
Poynting vector, i.e. intensity.

The evident definition of a nondiffracting field propagating along the z-axis is the wave
of the form

E(x, y, z) = E(x, y) eiβz, (1)

where E is the electric field strength and β is the longitudinal wavenumber. More general
definition based on the Poynting vector is given in papers [13, 14]. The time-averaged Poynting
vector I = 〈S〉 = (c/8π) Re [E × H∗] can be decomposed into the longitudinal (along the
z-axis) and transversal components as I = IL + IT , where H is the magnetic field strength.
The stationary beam is diffraction free, if

divIT = 0. (2)

Such definition has simple geometrical interpretation: the transverse component of the
nondiffracting field energy flux has no source. Relationship (2) also includes all the fields
with zero transverse Poynting vector IT = 0.

However, the aforementioned definition has the drawback when it is applied to evanescent
beams. In fact, the energy flux of the superposition of TE- and TM-polarized evanescent
Bessel beams in the homogeneous isotropic medium with dielectric permittivity ε and magnetic
permeability µ equals

I = c

8π
e−2β ′z

(
kν

q2r
(µ|A|2 + ε|B|2)J 2

ν (qr) eϕ

− 2ν

q3r
(β ′2 + k2εµ)J ′

ν(qr)Jν(qr) Im[AB∗] ez − 2β ′ν
q2r

J 2
ν (qr) Im[AB∗] er

)
,

(3)

where er , eϕ, ez are the basis vectors of the cylindrical coordinates (r, ϕ, z), β ′ = −iβ, q is
the radial wavenumber, k = ω/c is the wavenumber in the vacuum, ω is the wave frequency,
Jν is the Bessel function of the first kind of the order ν, J ′

ν(x) = dJν/dx, the symbol ∗
denotes complex conjugate, and A and B are the amplitude factors of TE and TM beams,
respectively. To get to the energy flux (3), one should take the superposition of TE and TM
Bessel beams with complex coefficients A and B. Electric and magnetic fields of TE and TM
Bessel beams are given in [14]. By substituting the propagation constant β for β ′, the fields of
evanescent Bessel beams can be derived. The averaged Poynting vector for such fields
equals (3).

It is obvious that such evanescent Bessel beam does not satisfy condition (2), since the
energy flux has radial component. Hence, expression (3) corresponds to the diffracting beam.
For B = 0 one obtains the energy flux of TE wave; the case A = 0 gives the Poynting vector
of TM wave. Both TE and TM Bessel beams possess only azimuth energy flux and so are
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nondiffracting according to definition (2). In our opinion, this result is illogical because the
superposition of two diffraction free beams with equal longitudinal wavenumbers diffracts.

To avoid incorrect statements, we will use another definition in this paper: the
nondiffracting stationary vector field is the field the energy flux I of which does not change
(for propagating waves) or changes uniformly (for evanescent waves). In the first case the
intensity is equal to I(x, y, z) = I(x, y), and in the second case I(x, y, z) = I(x, y)g(z),
where g(z) is a scalar function. Such definition for evanescent beams implies the conservation
of the intensity distribution during their motion, but the intensity itself decreases. Further, the
types of nondiffracting fields in inhomogeneous isotropic media will be found.

Let us consider a vector electromagnetic field propagating in the z-direction in a
nonmagnetic isotropic medium with dielectric permittivity ε(x, y, z). The medium is regarded
to be nonabsorbing, i.e. ε is the real function. In such a medium the wave can be diffraction
free only if the dielectric permittivity depends on the longitudinal coordinate z:

ε(x, y, z) = ε(z). (4)

The electric field strength satisfies the Helmholtz equation

�E(x, y, z) + k2ε(z)E(x, y, z) = 0

and can be divided as follows:

E(x, y, z) = E(x, y)f (z), (5)

where � = ∇2 is the Laplace operator and ∇ is the nabla operator. The functions E(x, y)

and f (z) can be found from the equations

(
∂2

∂x2
+

∂2

∂y2

)
E(x, y) + q2E(x, y) = 0, (6)

d2f (z)

dz2
+ (k2ε(z) − q2)f (z) = 0. (7)

From here on, we denote E(x, y) = E. The solution of equation (6) can be written as the plane
wave superposition with the wavenumber q. Therefore, the strength E can be expressed by
means of the functions exp(iqr) (plane waves), sin(qr) (standing waves), Jν (Bessel beams),
etc. Generally, the functions E and f = ρ(z) exp(iψ(z)) are complex. Since ε(z) is the real
function, from equation (7) it follows the conservation law, which is expressed as

Im

[
f

df ∗

dz

]
= α = const. (8)

Selecting the function ε(z) one can realize different types of fields (5). The magnetic field
strength is determined from the Maxwell equations; it equals

H(x, y, z) = 1

ik

(
f ∇ × E +

df

dz
ez × E

)
.

Then the time-averaged Poynting vector takes the form

I(x, y, z) = c

8πk

(
|f |2Q − P + (|E⊥|2 Im

[
f

df ∗

dz

]
− Im[E⊥∇E∗

z ]|f |2) ez

)
, (9)

where E = E⊥ + Ez ez, Q = Im[(ez∇ ×E∗
⊥)E⊥ × ez + Ez∇E∗

z ], P = Im[f (df ∗/dz)EzE
∗
⊥].

First the existence of the nondiffracting propagating wave will be considered. For such a
vector field I = I(x, y) should be fulfilled. From (9) one can see that the longitudinal energy
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flux component Iz consists of two summands. The first summand does not depend on the
coordinate z owing to expression (8). The second summand does not depend on z in each of
the following four cases. In each of these cases the beam is the nondiffracting one.

(i) |f |2 = γ = const. From this condition it follows that f (z) = √
γ exp(iβz) and

α = γβ. Such diffraction free beams can propagate only in homogeneous media. The
beams are characterized by the longitudinal wavenumber β2 = k2ε − q2. Vector E is an
arbitrary complex vector satisfying equation (6). Therefore, such beams are characterized by
an arbitrary elliptical polarization.

(ii) E is a real vector, i.e. the beam polarization is linear. In this case the energy flux is
equal to

I(x, y) = αc

8πk
(|E⊥|2 ez − EzE⊥)

for any complex function f . Function f satisfies condition (8), which determines the link
between its real and imaginary parts. It is easy to find the function itself,

f (z) = ρ(z) exp

(
−iα

∫
dz

ρ2(z)

)
. (10)

The absolute value ρ(z) of f can be expressed from the differential equation (7). If one wants
the function ρ to be the solution of equation (7), then he or she should take the dielectric
permittivity in the form

ε = 1

k2

(
α2

ρ4
− 1

ρ

d2ρ

dz2
+ q2

)
. (11)

(iii) E⊥ = a ez ×∇E∗
z , where a is an arbitrary complex number. This condition causes the

zero second summand in Iz. In the case under consideration Q ∼ Im[Ez∇E∗
z ]. The energy flux

have to be z-independent; therefore, the condition Q = 0 or, equivalently, Im[Ez∇E∗
z ] = 0

should hold true. From the last expression it follows the conclusion that the longitudinal
component of the electric field Ez should be the real function of transverse coordinates. The
vector

P =
(

α Re [a] − Re

[
f

df ∗

dz

]
Im[a]

)
Ez(ez × ∇Ez)

has to be z-independent, too. Therefore, we can write the equation Re[f (df ∗/dz)] = σ =
const, from which it follows that ρ = √

σz + C, where C is a constant. For this function ρ one
can find f and dielectric permittivity from expressions (10) and (11), respectively. Therefore,
there is an elliptically polarized nondiffracting field which is described by the vector complex
wave

E(x, y, z) = (a ez × ∇Ez + Ez ez)(σz + C)1/2−iα/σ (12)

propagating in the inhomogeneous medium

ε = σ 2 + 4α2

4k2(σz + C)2
+

q2

k2
. (13)

The medium (13) is frequency dispersive because the dielectric permittivity includes the
wavenumber k.

(iv) E⊥ = b∇Ez, where b is a real number. Then the second summand in the longitudinal
energy flux component Iz becomes zero. The vector Q = Im[Ez∇E∗

z ] should become zero,
too. Therefore, Ez and E are real quantities, i.e. this case is the particular case of (ii).
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According to our definition an evanescent wave is diffraction free when the energy flux
can be presented in the form I(x, y, z) = I(x, y)g(z). For evanescent waves, the function
f (z) is real and so α = 0 and the Poynting vector (9) equals

I(x, y, z) = c

8πk

(
f 2Q − f

df

dz
Im[EzE

∗
⊥] − f 2 Im[E⊥∇E∗

z ] ez

)
. (14)

The wave will be nondiffracting in the following cases.
(v) f (df/dz) = mf 2, where m is a constant. Then f = exp(mz) and g(z) = exp(2mz).

The considered solutions correspond to the waves in homogeneous media, for which m = −β ′.
The vector Bessel beam with the energy flux (3) is the typical example of such a field.

(vi) Im[EzE
∗
⊥] = 0; then g(z) = f 2. The function f can be found from (7) for any

inhomogeneous medium. Then vector E can be an arbitrary real vector satisfying (6) or a
complex vector of the form E = Eza, where a is a real constant vector.

(vii) Im[E⊥∇E∗
z ] = 0, Q = 0; then g(z) = f (df/dz). Such conditions correspond

to items (ii)–(iv) for propagating waves. For real vectors E, the energy flux is equal to
zero and evanescent beams are diffraction free. In case (iii), when the vector field equals
E(x, y) = a ez × ∇Ez + Ez ez, the Poynting vector of the evanescent wave takes the form

I = c

8πk
f

df

dz
Im[a]Ez ez × ∇Ez.

In contrast to propagating waves, the just considered evanescent beams are nondiffracting in
any z-inhomogeneous medium.

Thus, the following vector fields (5) are diffraction free: elliptically polarized waves with
complex E and f = exp(iβz) for propagating waves or f = exp(−β ′z) for evanescent waves
in a homogeneous medium; propagating and evanescent linearly polarized waves with real E
and function f determined from (10) in an arbitrary z-inhomogeneous medium; propagating
elliptically polarized waves of the form (12) in the medium (13); and evanescent waves with
complex vectors E = Eza (a is a real constant vector) and E = a ez × ∇Ez + Ez ez (Ez is a
real function) in any z-inhomogeneous medium.
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